N 3
7. WaveAccess

We Make IT Easy

]
\ e J
U LA
C
Q\\ m."
N N LT |
<
.« &
SEFSSES
' DI
285>%: s
> O - : -
g = > S -

- = < ; &
‘23: s == - 3 E?
. | < . & 3 = &
SRe® &2 I 3 g

P e 2 £ S S &ED

5.; " o S g

2 % %
J o. 'ﬁ > ’56 R
"‘ .; " .ﬁ '/ - i\
* thy, 2 R
" ﬂ'%’ " ", ” T Q 2 S
a%, % ’/" " "o ‘.‘“. . \\ K N
) p
Qﬁ 0',..”’1 I”’.“l wo \ \\
"
'0“ % mgo g oot
LJ
“.. T

Machine learning

based module to detect users’
fraudulent activity

About

WaveAccess is a results focused software development company that provides
high quality software outsourcing services to hundreds of emerging and
established companies globally. We use our technical expertise to increase
business efficiencies, optimize slow or unreliable systems, recover projects that
have gone off track and bring ambitious ideas to life.

years of delivering
successful outcomes
for customers

17+

industry verticals
from banking
to healthcare

800+

talented and passionate
professionals

500+

successful projects
delivered and counting

| Awards and Recognitions

Microsoft

2017 Partner of the year
Pa rt ner Business Analytics Award

B Microsoft

4

[
WORLDWIDE
DYNAMICS PARTNER
OF THE YEAR

Microsoft
Partner | Aartificial mtelligence

2018 Partner of the year

Award

B Microsoft

R&D centers
and regional
offices

6%

customer
satisfaction index

M ICFOSOft 2019 Partner of the year
Partner | Media & communications

Award

SCI-TECH AWARDS
(ACADEMY OF MOTION PICTURE
ARTS AND SCIENCES)

B Microsoft

Project overview

The subsystem that is based on machine learning and fuzzy logic algorithms
developed for the big telecom company in Russia. The company needs to
protect its web portal with more than million users from data fraud.

| The problem

Our client needed the protection module that can tell different fraudulent actions
from millions of normal actions of the portal’s users.

The fraudulent activity is hard to predict or to prevent. Be it access from some
fake IP, or attempt to steal a credit card number, as well as several dozen other
unpredictable events - cybercrimes are inventive and unpredictable.

To recognize suspicious actions as threats, our customer needed a module based
on algorithms of fuzzy logic and machine learning. We were required not only to
develop, but also to train it.

| Why WaveAccess?

We specialize in developing and implementing machine learning and fuzzy logic
based systems. Our clients use these solutions to implement:

— Trend and event forecasting.
— QObject recognition and classification.
— Personal recommendations.

Being a full circle developer allows us to immediately offer the whole working
team, and to provide our client with comfortable project monitoring tools.

| Work stages

Analysis of possible attacks
and formalization of 16 types of
threats to the system.

e —— e . e e e e e e e e .

Implementation of fuzzy logic:
selection of the input output
engine, caching of elements
and creation of API.

> = — — ———————————————————— — — — — = — = — = = - - - - - ————

Implementation of machine learning
to customize the analytics
module with training data.

e —— e . e e e e e e e e .

External API
for integration with
the developed module.

= = = — ————————————————— — — — — — — = — — - - - - - - —————

Development of the
administration module
with the user interface.

e —— e . e e e e e e e e e e

Development of a «test utility»
for performance, load and
integration testing.

o . e e e e e e e e e

Testing:
autotests, installation testing,
interface tests.

—— API N - N ~— Treat model —

Input request =T—>

First, we analyzed most of possible threats to the portal, which allowed us

to define and formalize 16 main threats types. For each of these threats we
developed an algorithm which determines how a threat will be defined and dealt
with. For some threats, a user’s feedback is requested, which determines the
reaction to a threat.

Reaction
" configuration

-9 @ 'I%t - Re(a%cion

User data > 1. E) - 1. Block for 5 min
Q| D — | :
Reactions Traffic history N E) N. Re-login

=

At the next stage we started developing the protection module. We started from the
analytics submodule, an API, and the testing utility.

The analytics module is the core of the system. It will process data with
algorithms of fuzzy logic. Algorithms were implemented in two different
realizations: small classes containing calculations and statistics gathering
structures with complex architecture and use of fuzzy logic.

Implementing the fuzzy logic turned out to be a very complex task. We chose
an template based input/output engine, then customized it: cached some of its
elements, then created an API to interact with templates.

We also implemented instant cash regeneration if the fuzzy logics calculation values
change (boundary values).

The machine learning allows for tuning the analytics module using the training
data. This helps to detect fraud even if a template has deviations. This approach
covers more similar situations, however, it requires resources to maintain the
tuning and testing.

Machine learning is divided to two stages:

1. Detection of anomalies. Helps to detect and analyze unknown patterns of
suspicious activity

2. Classification of patterns (both known, and detected in the Detection of
anomalies stage)

While implementing the external API for integration with the Anomalies Monitor, we
followed REST architecture guidelines, APl is kept small. The data coming from the
APl is subjected to basic validation.

Both API services and the whole system are built by the guidelines of stateless
architecture, which allows us to easily scale the developed product if needed. The
cluster consists of four servers of applications with redundancy and load balancing.

| Design and development of an administrator’s
submodule

To keep setup and monitoring processes simple, we designed and developed
the submodule with Ul. Despite the fact that our Client didn't expect getting
this improvement, it turned out to be very useful. This module allows the client
to monitor event logs and security logs and setup the Anomalies Monitor’s
subsystems.

To ensure a top quality project, we implemented different types of testing.
For Integration testing we developed the testing utility (named scripts imitator). This

approach saved time and resources that are normally spent on manual testing. It
also allowed us to add the testing into Continuous Integration.

= G |a P08 o @0
HE Cepancyl BN Database B Java B Play o1 gmall O cthud B Babucket §F dvdapgdayy [NeBlogDefFou) [Servessenteve W ToolstoHeipye [Mechanicat Syn [Enumeral tan €

0 MOHATOR BHOMENWE

P

Integration tests may be developed for all of the module’s scripts. Input data for
every test was parameterized and saved into a file. When a test was launched, the
system generated the data from the file. After the required amount of data was
generated, the real results were checked and compared with expected results (which
were also saved into the file).

Anomaly Monitor subsystem is designed to handle a huge amount of input data,

so we meticulously tested the load and performance. We created auto tests to
determine the amount of correctly processed requests and to see the time spent on
request processing.

To load the system and to test different aspects of it, we used the same testing
utility. It can show if the algorithm functions correctly, it also generates the data flow
to test the performance.

To create data overload, this utility “attacks” the service with REST-requests in the
multithreading mode. This behavior can be configured by the XLS-file that contains

settings for every threat detection algorithm.

The utility uses the thread pool. The interval running of thread pools is also provided.

The part of the utility which is responsible for Anomaly Monitor’s load, uses several
thread pools. Interactions are executed according to the order; this keeps the
memory and processor free of ongoing inquiries, while the pool which is responsible
for sending inquiries doesn't stay idle. We optimized weak points detected while
testing (mostly database issues). We optimized inquiries, cleaned up the max
amount of join tables and slow inquiries. We created covering indices and simplified
data types to reduce the table’s size.

137060
Cnucok coBbITUiA
Tammog & 2703 01T 0 u Ty o 19,04 201 7 0100 u kg ofibEkTa e Bl
MEERTIfHIETOR ?
nonLaceATENACITTENE = yipans 1o B pl i
o[
01 feceis e 51) n 2|3
. . FpANHTL AvGeEnte | X
Spentn & ~ ®op cduexma | Mog yrpom agaen sar figes mrafinTop nonkscnnTEnsle
pestn ocTyna op DaveT o yTposa | AelicTane | OToET NCALIDGATENR 1P agacr s | o | e VigEm i G N30 TE Rl K Teu L
ITOR201T IAZA6504 | PerRTDMYR ¥TPL 6L | 251252 353 25¢ e | MoERAS.0 Wirdows BT B.11 rvdd O Gerkor2010010] Firetoniae o
7032017 1E 1238584 PeIACTDaLMA ¥TPL C3A1 7 BaaAHE! MERODPENTHEE NFHEE 251250253 254 G MOZHXS.0 (Windows NT 6 1, v 22 0} Gecko20100101 Firefondd 0
FTOF20NT ABIZ22604 | PerecTpELmR T yIpean 251252253258 & | MoEiass. 0 (Windows WT 6.1, fv 44 0} Geck'20100101 Fireforiad 0
27032017 181210 884 PEIACTPALLIA Har yipoas 251252253254 [MGEAS. 0 (Windoves NT 6 1 v dd 0} Gecked 20100101 Firsfonddd 0
ITN3.2017 11158884 ParmcTpatps et yipoak | #51.252.3%3 2064 L. | Minzilalt o (Windows NT 8 1. rv 48 0} Gacko 20100101 Fircfoxdd 0
ETO32017 11146884 PEMMCTROUER Her ympoan HL2BE I 2N £ Moziln/3.0 (Windows NT 6 1; redd 0} GekoZ0100101 Frefondd o
ITOAINT AEILIATBA | Perscrpaups | Her yrpoa [ELEL LT e | Moitnin. 0 (wandove BT £ 1; red 0} Gecko@0I00101 Firsfon84.0
27032007 IE1I2IAB4 | Perecrpmgm | Herypeas 251282253 254 B WA/ (Windws NT B.1; re44 0} Gerka/20100101 Firsioo4d 0
ITOLIONT IEILA0ERL . | FerwcTpmuun | Heryrpodu | anyanzoszmy e | Moritnln, 0 (Windoves T 8.1 r-44.0} Geckal20100101 Firsfaidad.0
ITOII0NT ISIOTAIE | PermoTpmupn | Her yrpoau 251,260 253,254 i Mcziln/a. 0 (Windowes NT 6.1 re4 0} Gecko20100101 Firsod4d 0
2TOAMNT IEI0ARER. | Pemcrpmun Her yrpoaw 2561252 963 264 e | Morfal5.0 (Windows NT 6.1, redd 0} Sedod20100101 Firsfrddd 0
FTO32017 I8 I0ILEEA PeraCTpaupa HET yipoas 251252253 254 i d Morila’S. 0 (Windows WT 6.1, v &4 0} Geckol 20100101 Frefoud O
27032007 8020 80E | PemCTRAUMH Her yipeds | 251252255258 - MeZilWS0 (Winduws NT 6.1, i 4 0} Geckin20100101 Firefin'dd 0

The test also showed that, while the Anomaly Monitor runs constantly, it

accumulates statistic data too fast, so the base grows, and the inquiries get slower.
To avoid these problems, we optimized the data keeping model, adding the deletion
of useless statistical data. Automated monthly partitioning was used for big tables.

As a result, we achieved performance and load that were even better than our
customer expected, so there was potential to grow the flow of processed data and
to grow the Monitor’s functionality.

To assure the quality of the system’s logic we used functional testing with the
SoapUl tool. Also, the automated tests were developed, which were sending REST-
requests with specific parameters.

To test the administration module with a Ul we used manual functional testing
according to the patterns developed in the analysis stage of testing procedures.

Ul automated testing. We used Selenium to create the main testing scripts, the
scripts run every time a new project is assembled.

Installation testing. We tested the installation of the system on physically different
processors with and without load balancing utility. Results proved that the system
behaves just as expected, and there’'s no need to remaster it.

B T P

& ca 0Ok u =0 &0
i Copaicyl Bm Database B Java Be Play +4 gmall O CiHud @ 82bucket &7 vdpgdayeu) [NeBlogDerfou) [Serversenteve: W ToolstoHeipwe [Mechanicat Sy [Enumeration £
0 MoHATOR ABCMAMH Cancos cofiums N]
230 Hatc
)KypHan BesonacHoCTH
o s | T = | BIR pp
BEATHOTTE YT e unbpase - o TR e et - TONaD re IEoMTanFLe
» I O
EE—] i - “

Tim ey BeponTio: TP
B\ g _ % v AVRETANG | DTROT MSORATONN | OINERsRS
- oBLITHE | yInotks | otk

27.00.2007 = Beitouas < CTBET I8 THIBGAIIEN YROSEHE TP, Tan RE ¥ npoEEpry MR MOMENT 27-03-2017 18 Gomsioe
11240684 BepORTHOCTE i npegyRarpen perucTpauwi c ip 251.252.253 254, 32 nepvog 1 vac cooTanaret 50.°

27092017 i . Cpemes " Boegen 3 W 27032017 3 . i i 253250 t SR S
18:17.34.854 Yoom ¥IP1 R D.aaL i SrR——— Ha e 27-03-2017 181234 nadia0aetcd DoRbU0e KNAYecTRO PErncTRECMI ¢ iy 251 252 250,254, 38 Nepuny L “ac coCTannnes 50,

| Documentation

We prepared the project documentation according to GOST (Russian standards for

technical documentation).

| Technologies

1. Backend: Java 8, Spring 4, Spring Boot 1.4, JDBC Template, jFuzzyLogic 1.3,

FlywayDB, ThymelLeaf, OpenCSV
2. Client part: Bootstrap, JQuery

3. Database: PostgreSQL 9.4+

4. Testing: JUnit, Selenium + PhantomdsS driver, JXLS Reader, SoapUl.

| Result

We developed the Anomaly Monitor subsystem that provides the following functions:

— Data monitoring and gathering;

— Keeping of gathered data, intermediate results, and service data;

— Sorting of threads’ attributes and analyzing threads probability;

— Determining the actions in response of an incident.

MapameTpbl CUCTEMBI

Burpyan CEV. Koapponka chaling gwintows- 175 LUTF-8)

HACTRORs fio4rbL SMTP, HNA Roisa0sa1ens

i Cepaci B Database B Java B Play o4 gmall € citub B Babucket g7 2dpgdayry [NoBlogDefFou) [Servessentave: b Tools o Heip

| HacTpoRea o+, SMTP, Mapone

Tl Kpsmes STICKa oSl fTysTos ITSeimE ApaMFT: 32 Bos P

The testing utility was also developed and given to our customer. It will simulate the
load on the subsystem and help to implement integral testing of the main module
using templates.

The main subsystem has passed all our internal tests. Our client has already started
to use it in a trial mode, and plan to implement it in practice in the near future.

Meanwhile we are working on the second stage of the project: self-learning
algorithms which are able to analyze threads' probability and choose a reaction
according to this probability.

@ Moy anmeni

S 0B 06D
Fi Cepaicis BN Database B Java B Play o gmall € catub @ Babucket g7 20vapgdsyiru [0 NoBlogDerfou) [Servessenteve M Toolstoteipyw ([Mechanicat Sy ([Enumeration £

@ Morormop anovanil comorcobumd ppan Secrmaic Crpuaieen - m e

YpoBeHL foBepus K IP

P e YDOBRHL QDGERHA
e D
11 1 w3 653 dmen nnecei 130424 o Vg [“

& appec Fpomens AoBepHR yganuts | Maween: T

192.158,1.4 | &
I92108.1.3 | 3
1582710 0.3
126,110,225 10 | s

I 24519 133,755 | e
19216815 05
18210010 |os
19714522232

[11825117318 I 0s

| 16.122.33.5% | o8
4416240255 L
144 226,237 97 [

5153152108 0.6

(%3 (2| %% [%|2 %X x| %|%x| %X x| x
SIS R N W 6 %7 B N R S N O N,

57.148.112.67 07

| Customer’s testimonial

«WaveAccess accomplished the project on schedule, and with exceptional quality,
despite changing our requirements several times after the project had started. We
appreciate their ability to deliver a high performance product, and to exceed our
every expectation.

WaveAccess was always there to help. Developers, analysts and managers
answered all of our questions, when we started to test the deployed project. The
managers informed us about changes in the tasks’ states right away, so we were
always aware of any changes throughout the entire process.»

~ WaveAccess

We Make IT Easy

If you would like to evaluate the capabilities of
machine learning for your project, we will be
happy to share our experience:

Tel.: +1 866 311 24 67
E-mail: hello@wave-access.com

Read more at
WWWw.wave-access.com

