
Machine learning
based module to detect users’
fraudulent activity

+

About
WaveAccess is a results focused software development company that provides
high quality software outsourcing services to hundreds of emerging and
established companies globally. We use our technical expertise to increase
business efficiencies, optimize slow or unreliable systems, recover projects that
have gone off track and bring ambitious ideas to life.

years of delivering
successful outcomes
for customers

00+
talented and passionate
professionals

96%+
customer
satisfaction index

successful projects
delivered and counting

Awards and Recognitions

00

1
®

1

Project overview
The subsystem that is based on machine learning and fuzzy logic algorithms
developed for the big telecom company in Russia. The company needs to
protect its web portal with more than million users from data fraud.

The problem
Our client needed the protection module that can tell different fraudulent actions
from millions of normal actions of the portal’s users.

The fraudulent activity is hard to predict or to prevent. Be it access from some
fake IP, or attempt to steal a credit card number, as well as several dozen other
unpredictable events - cybercrimes are inventive and unpredictable.

To recognize suspicious actions as threats, our customer needed a module based
on algorithms of fuzzy logic and machine learning. We were required not only to
develop, but also to train it.

Why WaveAccess?
We specialize in developing and implementing machine learning and fuzzy logic
based systems. Our clients use these solutions to implement:

— Trend and event forecasting.

—

— Personal recommendations.

Being a full circle developer allows us to immediately offer the whole working
team, and to provide our client with comfortable project monitoring tools.

2

3

Work stages

1Analysis of possible attacks
and formalization of 16 types of
threats to the system.

3Implementation of machine learning
to customize the analytics
module with training data.

5Development of the
administration module
with the user interface.

7Testing:
autotests, installation testing,
interface tests.

2Implementation of fuzzy logic:
selection of the input output
engine, caching of elements

 and creation of API.

4External API
for integration with
the developed module.

6Development of a «test utility»
for performance, load and
integration testing.

2

3 4

At the next stage we started developing the protection module. We started from the
analytics submodule, an API, and the testing utility.

The analytics module is the core of the system. It will process data with
algorithms of fuzzy logic. Algorithms were implemented in two different
realizations: small classes containing calculations and statistics gathering
structures with complex architecture and use of fuzzy logic.

Implementing the fuzzy logic turned out to be a very complex task. We chose
an template based input/output engine, then customized it: cached some of its
elements, then created an API to interact with templates.

We also implemented instant cash regeneration if the fuzzy logics calculation values
change (boundary values).

The machine learning allows for tuning the analytics module using the training
data. This helps to detect fraud even if a template has deviations. This approach
covers more similar situations, however, it requires resources to maintain the
tuning and testing.

Machine learning is divided to two stages:

1. Detection of anomalies. Helps to detect and analyze unknown patterns of
suspicious activity

2. (both known, and detected in the Detection of
anomalies stage)

First, we analyzed most of possible threats to the portal, which allowed us

with. For some threats, a user’s feedback is requested, which determines the
reaction to a threat.

API

Input request

Reactions

User data

Tr tory

1.

2.

...

N.

Treat Reaction

1. Block for 5 min
2. Captcha
...
N. Re-login

Treat model Reaction
ration

4 5

While implementing the external API for integration with the Anomalies Monitor, we
followed REST architecture guidelines, API is kept small. The data coming from the
API is subjected to basic validation.

Both API services and the whole system are built by the guidelines of stateless
architecture, which allows us to easily scale the developed product if needed. The
cluster consists of four servers of applications with redundancy and load balancing.

Design and development of an administrator’s
submodule
To keep setup and monitoring processes simple, we designed and developed
the submodule with UI. Despite the fact that our Client didn’t expect getting
this improvement, it turned out to be very useful. This module allows the client
to monitor event logs and security logs and setup the Anomalies Monitor’s
subsystems.

QA
To ensure a top quality project, we implemented different types of testing.

For Integration testing we developed the testing utility (named scripts imitator). This
approach saved time and resources that are normally spent on manual testing. It
also allowed us to add the testing into Continuous Integration.

5 6

Integration tests may be developed for all of the module’s scripts. Input data for

generated, the real results were checked and compared with expected results (which

Anomaly Monitor subsystem is designed to handle a huge amount of input data,
so we meticulously tested the load and performance. We created auto tests to
determine the amount of correctly processed requests and to see the time spent on
request processing.

To load the system and to test different aspects of it, we used the same testing
utility. It can show if the algorithm functions correctly, it also generates the data flow
to test the performance.

To create data overload, this utility “attacks” the service with REST-requests in the

settings for every threat detection algorithm.

The utility uses the thread pool. The interval running of thread pools is also provided.

The part of the utility which is responsible for Anomaly Monitor’s load, uses several
thread pools. Interactions are executed according to the order; this keeps the
memory and processor free of ongoing inquiries, while the pool which is responsible
for sending inquiries doesn’t stay idle. We optimized weak points detected while
testing (mostly database issues). We optimized inquiries, cleaned up the max

data types to reduce the table’s size.

6 7

The test also showed that, while the Anomaly Monitor runs constantly, it
accumulates statistic data too fast, so the base grows, and the inquiries get slower.
To avoid these problems, we optimized the data keeping model, adding the deletion
of useless statistical data. Automated monthly partitioning was used for big tables.

As a result, we achieved performance and load that were even better than our
customer expected, so there was potential to grow the flow of processed data and
to grow the Monitor’s functionality.

To assure the quality of the system’s logic we used functional testing with the
SoapUI tool. Also, the automated tests were developed, which were sending REST-

To test the administration module with a UI we used manual functional testing
according to the patterns developed in the analysis stage of testing procedures.

UI automated testing. We used Selenium to create the main testing scripts, the
scripts run every time a new project is assembled.

Installation testing. We tested the installation of the system on physically different
processors with and without load balancing utility. Results proved that the system
behaves just as expected, and there’s no need to remaster it.

7 8

Documentation
We prepared the project documentation according to GOST (Russian standards for
technical documentation).

Technologies
1. Backend: Java 8, Spring 4, Spring Boot 1.4, JDBC Template, jFuzzyLogic 1.3,

FlywayDB, ThymeLeaf, OpenCSV

2. Client part: Bootstrap, JQuery

3. Database: PostgreSQL 9.4+

4. esting: JUnit, Selenium + PhantomJS driver, JXLS Reader, SoapUI.

Result
We developed the Anomaly Monitor subsystem that provides the following functions:

— Data monitoring and gathering;

— Keeping of gathered data, intermediate results, and service data;

— Sorting of threads’ attributes and analyzing threads probability;

— Determining the actions in response of an incident.

8 9

The testing utility was also developed and given to our customer. It will simulate the
load on the subsystem and help to implement integral testing of the main module
using templates.

The main subsystem has passed all our internal tests. Our client has already started
to use it in a trial mode, and plan to implement it in practice in the near future.

Meanwhile we are working on the second stage of the project: self-learning
algorithms which are able to analyze threads’ probability and choose a reaction
according to this probability.

Customer’s testimonial
«WaveAccess accomplished the project on schedule, and with exceptional quality,
despite changing our requirements several times after the project had started. We
appreciate their ability to deliver a high performance product, and to exceed our
every expectation.

WaveAccess was always there to help. Developers, analysts and managers
answered all of our questions, when we started to test the deployed project. The
managers informed us about changes in the tasks’ states right away, so we were
always aware of any changes throughout the entire process.»

If you would like to evaluate the capabilities of
machine learning for your project, we will be

happy to share our experience:

E-mail: hello@wave-access.com
Tel.: +1 866 311 24 67

Read more at
www.wave-access.com

9

