
Algorithms and code
performance optimization

+

About
WaveAccess is a results focused software development company that provides
high quality software outsourcing services to hundreds of emerging and
established companies globally. We use our technical expertise to increase
business efficiencies, optimize slow or unreliable systems, recover projects that
have gone off track and bring ambitious ideas to life.

years of delivering
successful outcomes
for customers

00+
talented and passionate
professionals

96%+
customer
satisfaction index

successful projects
delivered and counting

Awards and Recognitions

00

1
®

Algorithms performance tuning projects appear when the code complexity and
data flow size become an issue to achieve results within a reasonable time. The
most popular technologies that we tune codebase on:

— Java

— R

— Python

— .Net

— C++

— SQL

Test Coverage
One major aspect of the WaveAccess delivery process that we follow is to cover
the code with tests for every case – general, exceptions, extremes, etc.
Development team does not start to make any changes until it does not have
enough tests to make sure that our optimizations do not affect the algorithm. It is
not a rare situation when one the algorithm has more than 100 test data sets. The
validation criteria is often a subject to discuss because some algorithms are
discrete with strict input and output data, but there are cases with fractions
number computing that has epsilons and mistake thresholds.

The tests are implemented as a unit test module and integrated into a continuous
integration environment. The test environment is usually a build server like a
TeamCity that compiles every commit into a code repository and runs all the tests.
This approach helps us find issues at the early stages and to ensure that we can
delivery a stable version at any time.

Project Overview

2

Performance Optimization Options
WaveAccess uses a rich set of options to increase the algorithms computing
speed:

1. Change common sub algorithms to be more efficient

As example is to change some part with a sorting code to be a more efficient
one – many common algorithms have disadvantages in some special cases
that cause computing degradation. Our job is to find the best algorithm that
works faster in most cases.

2. Add caching

This is a popular approach to find places in the code that have a good hit cache
rate and put the cachable data into memory, shared cache (Redis for example),
or disk.

3. Utilize CPU fastest instructions

Processors evaluated enough to perform several instructions per cycle.
Sometimes the computing hot spot can be changed to use different data
structure and operations that are more native for CPU and can be executed
much faster.

4. Utilize memory better

The whole idea of this case is to use cache CPU L1-3 memory cache better.
This means that the way code iterates on simple arrays (sequence or
randomly) are important for the CPU memory cache hit rates.

5. Multi-threading and clustering

The whole idea of this case is to use cache CPU L1-3 memory cache better.
This means that the way code iterates on simple arrays (sequence or
randomly) are important for the CPU memory cache hit rates.

6. Increase efficiency on code execution

Based on reverse engineering analysis, it is possible to find places that can be
re-implemented better – code style, SQL queries, or layer architecture. After
refactoring, the app will have improved SQL queries execution plans, fewer IO
operations/queries to the database, fewer code cycles, etc. As a result, a better
execution speed is achieved.

3

7. Porting one faster technology

When it appears that the current technology executes code slower than other
ones, in this case it is always a solution to implement a small module on
Java/C++ and seamlessly integrate it with R keeping global app interfaces the
same.

More details in our article: R performance optimization using Java.

8. Use GPU acceleration

This radical approach can dramatically increase computing speed 6-100 times
in some particular cases. The whole idea that >200 weak cores on GPU are
much faster than 4-16 core on CPU especially on highly parallelized algorithms
with heavy and random memory access. The WaveAccess team uses CUDA
SDK and OpenCL for GPU accelerated code implementation.

More details can be found in our article: Breakthrough in CUDA data
compression.

The Result
Algorithms performance tuning by the WaveAccess team delivers computation
results in a reasonable time and thereby drives and improves the efficiency of
processes.

4

If you have a project for us,
please get in touch

scientific@wave-access.com
Skype: wave_access

wave-access.com

